<small id="IqNdOq"><legend></legend></small>

      <dd id="IqNdOq"></dd>

      <small id="IqNdOq"><tt id="IqNdOq"></tt></small>

      1. <dl id="IqNdOq"></dl>

        1. 18123966210

          product

          產(chan)品(pin)中心

          當前位置:首(shou)頁(ye)產(chan)品(pin)中心OssilaOssila材料DPP-DTT OVP材(cai)料PDPP2T-TT-OD Ossila代(dai)理(li)PDPP2T-T

          Ossila材料DPP-DTT OVP材(cai)料PDPP2T-TT-OD Ossila代(dai)理(li)PDPP2T-T

          產(chan)品(pin)簡(jian)介(jie):Ossila材料DPP-DTT OVP材(cai)料PDPP2T-TT-OD Ossila代(dai)理(li)PDPP2T-TT
          Ossila廠(chang)家(jia)直接訂貨、原裝正(zheng)品(pin)。交(jiao)期(qi)準(zhun)時(shi)。洽(qia)談!!!

          產(chan)品(pin)型(xing)號:

          更新(xin)時(shi)間(jian):2025-03-31

          廠(chang)商性質(zhi):代理(li)商

          訪(fang)問(wen)量(liang):2792

          服(fu)務熱線(xian)

          0755-23003036

          立(li)即咨(zi)詢
          產(chan)品(pin)介(jie)紹(shao)

          只(zhi)用於動物(wu)實驗(yan)研(yan)究(jiu)等

          Ossila材料DPP-DTT OVP材(cai)料PDPP2T-TT-OD Ossila代(dai)理(li)PDPP2T-TT

          BatchMwMnPDIStock info
          M314292,20074,9003.90Low in Stock
          M315278,78176,3233.65In stock

          General Information

          CAS number1260685-66-2 (1444870-74-9)
          Chemical formula(C60H88N2O2S4)n
          HOMO / LUMOHOMO = -5.2 eV, LUMO = -3.5 eV [2]
          Synonyms
          • PDBT-co-DTT
          • PTT-DTDPP
          • PDPP-DTT
          • PDPP2T-TT
          • PDPP2T-TT-OD
          • Poly[2,5-(2-octyldodecyl)-3,6-diketopyrrolopyrrole-alt-5,5-(2,5-di(thien-2-yl)thieno [3,2-b]thiophene)]
          SolubilityChloroform, chlorobenzene and dichlorobenzene
          Classification / FamilyBithiophene, Thienothiophene, Organic semiconducting materials, Low band-gap polymers, Organic photovoltaics, Polymer solar cells, OFETs

           

          DPP-DTT polymer chemical Structure, 1444870-74-9
          Chemical structure of DPP-DTT, CAS No. 1260685-66-2.

          OFET and Sensing Applications

          The exceptional high mobility of this polymer of up to 10 cm2/Vs [2] via solution-processed techniques, combined with its intrinsic air stability (even during annealing) has made PDPP2T-TT-OD of significant interest for OFET and sensing purposes.

          While the highest mobilities require exceptional molecular weights of around 500 kD (and with commensurate solubility issues), high mobilities in the region of 1-3 cm2/Vs can still be achieved with good solution-processing at around 250 kD. As such, we have made a range of molecular weights available to allow for different processing techniques.

          In our own tests, we have found that by using simple spin-coating onto an OTS-treated silicon substrate (using our prefabricated test chips), high mobilities comparable to the literature can be achieved  (1-3 cm2/Vs). Further improvements may also be possible with more advanced strain-inducing deposition techniques.

          DPP-DTT OFET output characteristics  DPP-DTT OFET transfer curves  
          DPP-DTT saturation mobility fit  DPP-DTT OFET mobilityExample OFET characteristics for DPP-DTT (M313) solution processed from chlorobenzene on a 300 nm SiO2 substrate treated with OTS. Output characteristic (top left), transfer curves (top right), mobility fitting (bottom left) and calculated mobility (bottom right).

          Ossila材料DPP-DTT OVP材(cai)料PDPP2T-TT-OD Ossila代(dai)理(li)PDPP2T-TT

          Photovoltaic Applications

          Although shown as a promising hole-mobility polymer for OFETs, when used as the donor material in a bulk heterojunction photovoltaic (with PC70BM as the acceptor), initial efficiencies of 1.6% were achieved for DPP-DTT [3]. The low device metrics were attributed to poor film morphology. However, a higher efficiency of 6.9% was achieved by using thicker film (220 nm) [4].

          PDPP2T-TT-OD has also recently been used successfully as an active-layer dopant material in PTB7-based devices [5]. An improvement in device performance was observed, with average efficiencies increasing from 7.6% to 8.3% when the dopant concentration of DPP-DTT was 1 wt%. The use of DPP-DTT as a high-mobility hole-interface layer for perovskite hybrid devices has also been investigated [6].

          Synthetic route

          DPP-DTT synthesis: DPP-DTT was synthesised by following the procedures described in [2] and [3] (please refer to the following references):

          With 2-thiophenecarbonitrile and dimethyl succinate as starting materials in t-amyl alcohol, it gave 3,6-Dithiophen-2-yl-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione. Alkylation of 3,6-Dithiophen-2-yl-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione with 2-octyldodecylbromide in dimethylformamide afforded 3,6-bis(thiophen-2-yl)-2,5-bis(2-octyldodecyl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione. Further bromination gave3,6-bis(5-bromothiophen-2-yl)-2,5-bis(2-octyldodecyl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione (M1).

           

           

          Further reaction of M1 with 2,5-bis(trimethylstannyl)thieno[3,2-b]thiophene (M2) under Stille coupling conditions gave the target polymer DPP-DTT, which was further purified via Soxhlet extraction with methanol, hexane and then chloroform.

           

          References:

          1. A High Mobility P-Type DPP-Thieno[3,2-b]thiophene Copolymer for Organic Thin-Film Transistors, Y. Li et al., Adv. Mater., 22, 4862-4866 (2010)
          2. A stable solution-processed polymer semiconductor with record high-mobility for printed transistors, J. Li et al., Nature Scientific Reports, 2, 754, DOI: 10.1038/srep00754 (2012)
          3. Synthesis of low bandgap polymer based on 3,6-dithien-2-yl-2,5-dialkylpyrrolo[3,4-c]pyrrole-1,4-dione for photovoltaic applications, G. Zhang et al., Sol. Energ. Mat. Sol. C., 95, 1168-1173 (2011)
          4. Efficient small bandgap polymer solar cells with high fill factors for 300 nm thick films, Li W et al., Adv Mater., 25(23):3182-3186 (2013); doi:10.1002/adma.201300017.
          5. Enhanced efficiency of polymer solar cells by adding a high-mobility conjugated polymer, S. Liu et al., Energy Environ. Sci., 8, 1463-1470 (2015)
          6. Electro-optics of perovskite solar cells, Q. Lin et al., Nature Photonics, 9, 106-112 (2015)
          7. A Vertical Organic Transistor Architecture for Fast Nonvolatile Memory, X. She et al., adv. Mater., 29, 1604769 (2017); DOI: 10.1002/adma.201604769.
          8. Solvent-Free Processable and Photo-Patternable Hybrid Gate Dielectric for Flexible Top-Gate Organic Field-Effect Transistors, J. S. Kwon et al., ACS Appl. Mater. Interfaces, 9 (6), 5366–5374 (2017); DOI: 10.1021/acsami.6b14500.

          T

          在(zai)線(xian)留言(yan)

          留言(yan)框(kuang)

          • 產(chan)品(pin):

          • 您的(de)單(dan)位:

          • 您的(de)姓名(ming):

          • 聯(lian)系電(dian)話:

          • 常(chang)用郵(you)箱:

          • 省(sheng)份:

          • 詳細地(di)址(zhi):

          • 補(bu)充(chong)說(shuo)明:

          • 驗(yan)證(zheng)碼:

            請(qing)輸(shu)入計算結(jie)果(guo)(填(tian)寫(xie)阿(e)拉伯數字),如:三(san)加(jia)四=7

          服務熱線(xian)
          18123966210

          掃碼(ma)加(jia)微信(xin)

          CpXyw
          国产真实乱在线更新 国产不卡视频播放二区 做你的爱人在线观看完整版 佐佐木明希一本色道 日韩不卡a v在线播放 中文字幕av在线亚洲 欧美影视99久久久久四色精品 日产中文乱码卡一卡二 国产女上位在线视频 欧美办公室video黑人 日韩欧美不卡顿在线视频 免费观看午夜熟女 久久精品99久久香蕉国产电影 日本a中文字幕国产 国产一二三区91在线播放 欧美日韩岛国丝袜

              <small id="IqNdOq"><legend></legend></small>

              <dd id="IqNdOq"></dd>

              <small id="IqNdOq"><tt id="IqNdOq"></tt></small>

              1. <dl id="IqNdOq"></dl>